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Abstract. We have explored a network model of cortical microcircuits based on integrate- 
and-fire neurons in a regime where the. reset following a spike is small, recurrent excitation is 
balanced by feedback inhibition. and the activity is highly irregular. This regime cannot be 
described by a mean-field theory based on average activity levels because essential features of 
the m d e i  depend on fluctuations from the average. We propose a new way of scaling the 
strength of synaptic interaction with the size of the network: rather than scale the amplitude 
of the synapse we scale the neurotransmitter release probabilities with the number of inputs to 
keep the average input constant. This is consistent with the low transmitter release probability 
observed in a majority of hippocampal synapses. Another prominent feature of this regime 
is the ability of the network to switch rapidly between different states, as demonstrated in a 
model based on an orientation columns in the mammalian visual cortex. Both network and 
intrinsic properties of neurons contribute to achieving the balance condition that allows rapid 
state switching. 

1. Introduction 

Cortical neurons in vivo are spontaneously active with a high degree of variability in the spike 
trains even in the absence of a driving input from the thalamus [ I ,  31. As a consequence, 
most studies of single unit properties report average firing rates as a way to overcome this 
'noise' and most models of cortical networks adopt the firing rate as the primary dynamical 
variable. Is noise a reflection of the inherent unreliability of single neurons or is it instead 
a fundamental feature of the dynamics of cortical networks? 

In contrast to in vivo conditions, neurons recorded in cortical slice preparations have 
little spontaneous activity and are more hyperpolarized with respect to the firing threshold. 
The strengths of synaptic inputs to cortical cells are generally quite small, in the range 
0.1-1 mV, which would require many tens of simultaneously activated excitatory inputs to 
reach threshold from the hyperpolarized levels found in vitro. This is consistent with the 
hypothesis that the function of a cortical neuron is to integrate many noisy inputs and to 
encode the average input in the average firing rate of a noisy spike train [2]. According 
to this view, only a time average of a spike train over a long interval (around 1 s), or 
population average across a large number of similar neurons (around 100) contains reliable 
information. 

A different view has emerged from intracellular recordings of cortical neurons in vivo. In 
the awake state, cortical neurons are rarely hyperpolarized to the 'resting' levels observed 
in vitro but instead hover near threshold most of the time. In addition many cortical 
neurons in vivo have a small afterhyperpolarization following an action potential [4, 51. 
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These observations suggest that the 'operating point' of a cortical neuron may be just below 
spike threshold, in a state of readiness to respond to transient inputs 16-81, If  the average 
membrane potential in vivo were to be maintained just below threshold most of the time, 
the number of synaptic inputs required to reach threshold would be much smaller than in 
the case of cortical neurons in vitro. 

In order to maintain the state of a neuron near threshold over a wide range of 
input conditions, excitatory inputs need to be balanced by inhibitory inputs, especially 
in cortical microcircuits where there are strong excitatory inputs from recurrent collaterals 
from neighboring pyramidal neurons. We have explored this balance hypothesis on the 
behaviour of a single neuron using a simple integrate-and-fire model and also a more 
realistic Hodgkin-Huxley-like model with active conductances [9]. We found that when the 
afterhyperpolarization in these models was small, and excitatory inputs were balanced by 
inhibitory ones, there was a high degree of fluctuation in the output spike train, similar to 
that observed from intracellular recordings of pyramidal neurons in vivo (see also 110, 21). 

A weak afterhyperpolarization implies that fewer simultaneous excitatory synaptic inputs 
are required to reach threshold; under these circumstances a single synaptic input could have 
a significant effect on spike firing. The amount of afterhyperpolarization in a neuron should 
therefore alter the dynamical behaviour of neurons in large networks. A central issue 
addressed in this paper is whether the balance condition, imposed artificially in models of 
single neurons, can be obtained in  a network model that includes populations of inhibitory 
as well as excitatory neurons with small afterhyperpolarization. We find robust conditions 
under which a network of integrate-and-fire neurons with the basic architecture of a cortical 
column is balanced over a range of input conditions. 

In contrast to conditions in which the output of a neuron is determined mainly by the 
average of its synaptic inputs, the so-called mean-field regime [I I], the outputs of neurons 
in 'balanced' networks also depend on the fluctuations of the inputs. Strong fluctuations 
dramatically affect the time course of the transition of the network between different states 
of activity. We illustrate this in a network model of orientation columns in the visual 
cortex. The activity of the network switches rapidly to a new state when weak external 
input switches between two orientations. 

2. Methods 

2.1. The model 

Consider a network of integrate-and-fire neurons, with separate excitatory and inhibitory 
populations. The dynamics of neuron i (i = 1 ,  . . . , N) are governed by a leaky integrator 
model: 

where V , ( t )  represents the membrane potential of the ith neuron, Vo IS the resting level, 
assumed to be the same for all the neurons in the model, g is the input conductance, 1; 1s 
an external input to the neuron i, and I , ( [ )  is the synaptic current, generated by inputs from 
excitatory and inhibitory populations: I , ( [ )  = Iy(t) - Each component is a sum 
of contributions from the spiking of individual neurons from the corresponding population. 
For simplicity, we neglect the driving forces for the synaptic currents and assume that these 
contributions do not depend on the postsynaptic membrane potential. This is a reasonable 
assumption if the membrane potential hovers around threshold most of the time. When a 
spike arrives at a presynaptic terminal, the postsynaptic current instantaneously Increases 
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according to the strength of the synapse, and decays with the time constant r r X  ( s t " ) .  We 
neglect the rise time of the postsynaptic current, assuming tbdt it is much smaller than the 
decay constant [14]. This dynamics of the synaptic currents are given by 

where K y  (K:;) is the strength of the excitatory (inhibitory) synapse between neurons j 
and i. The synapses are probabilistic and the binary random variable se"(t) (sin(t)) equals 
1 with the probability pe, (pin), and is zero otherwise. The spike in neuron j occurs at 
time ti. 

When the potential V; reaches a threshold value V,h. neuron i emits a spike and its 
membrane potential is reset instantaneously to a fixed reset potential, Vr,,v. The synaptic 
strengths are comparable in  magnitude to the reset potential. 

Rather than model the inputs to the network from the thalamus and other cortical areas 
with spike trains, the external input current IiO is a continuous variable and provides only a 
weak bias to the network rather than a strong driving input. 

2.2. Conditions for validity of the mean-field approximation 

The amplitude of synaptic current fluctuations in a neuron can be estimated from the 
parameters in the model. Consider the excitatory component of the synaptic current for 
one of the model neurons. From equation (2), the average value of IeX(t) in the steady 
state is approximately I -- K r(pvn) = K re+v,,,, where K and p are average strength 
and reliability of an excitatory synapse, v is an average spiking rate, n is the number of 
excitatory synapses, and v,,, = pun is the total frequency of incoming excitatory synaptic 
inputs. We can estimate the minimum amplitude of the fluctuations of the current when the 
presynaptic neurons are uncorrelated. Then the standard deviation of I is approximately 

a,-- KJK. (3) 

In the static mean-field approximation the fluctuating current is replaced by the average 
current, as determined by the average spiking rates of the presynaptic neurons (for a more 
detailed discussion see [12, 13, 151). This approximation is valid when the fluctuations are 
small compared to the mean current required to drive the neuron from the reset potential to 
the threshold potential, I,,, = g(V,h - V,,). The reset current rather than the total excitatory 
current should be compared with the size of the fluctuations since a significant fraction of 
the total excitatory current must be compensated by the inhibition to prevent overloading the 
neuron with excitation. Thus, the mean-field approximation is only valid when the value 
of dimensionless parameter k = ar/I,, is much less than one. Alternatively, one may 
consider the standard deviation of the potential, a" -- a,/g, relative to the change of voltage 
following reset. Expressing parameter k in terms of the average excitatory postsynaptic 
potential, E - Kterlgrm, the static mean-field regime is given by the condition 

where AV = Vrh - Vrer, rm = C/g is the membrane time constant. Intuitively, k is large 
when the magnitude of reset is small compared to the expected fluctuation in the membrane 
potential within the time course of the synaptic current. A rough estimate for k for a neuron 
i n  visual cortex responding to its preferred stimulus based on E -- 0. I mV, V,h - V,, - 
5 mV, tm -- 20 ms, rex -- 5 ms, p -- 0.1, n -- 1000, v -- 50 s-' in equation (4) [2] yields 
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k 0.5. Under these conditions, the magnitude of current fluctuation within a synaptic 
time constant is comparable to the current needed to reach threshold. Hence, the dynamics 
is dominated by fluctuations and the mean-field approximation would not hold. Although 
some of these numbers are far from being reliably known, and our estimate could be an 
order of magnitude off, the above estimate for k indicates that there are reasonable values 
for the parameters under which the visual cortex may be operating in the non-mean field 
regime. In this paper, we use network simulations of integrate-and-fire neurons to explore 
this regime. 

For convenience, the membrane potential was linearly transformed so that Vo = 0, 
K h  = 1 and C = g = 1. With these choices the current was dimensionless. 

3. Results 

3.1. Homogeneous network 

The homogeneous model is meant to roughly approximate a small population of neurons 
in  layer 4 of the cortex. Inputs from the thalamus contact both excitatory and inhibitory 
neurons in layer 4. Around 20% of cortical neurons are inhibitory and 20% of the synapses 
on a typical cortical pyramidal neuron from neighboring neurons are inhibitory [4]. In the 
network model there were 400 excitatory and 100 inhibitory neurons and the external input 
to each neuron, I. = 1.001, was chosen to bring each neuron just above the firing threshold. 
The reset was close to threshold. V,, = 0.9. The excitatory neurons in cortex have recurrent 
collaterals that make synapses with other excitatory neurons within the same column as 
well as with inhibitory neurons. This intracolumnar network was modelled with complete 
connectivity between all the excitatory neurons, and between all the excitatory and inhibitory 
neurons in the network. All the connections had the same strength KC' = K'" = 0.02. 
With this choice of excitatory synaptic strength, five simultaneous excitatory inputs would 
be sufficient to elicit a spike starting from the reset level. Activity in the larger excitatory 
population was balanced by choosing a higher probability for transmitter release at inhibitory 
synapses pi, = 0.7 compared with that at excitatory synapses p,, = 0.2 This choice of 
parameters leads to k - 0.5, similar to the estimate made for cortical neurons discussed 
above. 

The unusual dynamics of the network are apparent in figure 1, which shows raster plots 
for selected neurons. All of the neurons in the network showed spike firing with high 
variations on a typical time scale of few tens of ms, with an average rate that varied from 
from 0 to 200 spikes per second. Although the pattern of firing varied dramatically with 
time (upper trace), all the neurons in the network, including the inhibitory neurons, had 
about the same average firing rate during any given interval. Despite strong correlations on 
the time scale of 20-50 ms, the spikes were not synchronous on the 1 ms time-scale, as 
shown in the cross-correlogram shown in figure 2. The broad peak in the cross-correlogram 
with a narrow peak near a time delay of zero is typical of spike trains recorded in vivo [4]. 

The total synaptic current in a single neuron fluctuated around zero even though there 
were massive swings of the excitatory inputs on a 20-50 ms time-scale, as illustrated 
in figure 3. This is consistent with a rough balance of excitation and inhibition as a 
consequence of feedback inhibition that closely matched the excitation. The fluctuations in 
the net synaptic current were nonetheless much higher than the superthreshold part of the 
external input fO. Thus, the positive feedback from other excitatory neurons in the same 
network served as a high-gain amplifier. Stability was insured by strong inhibition that 
throttled the chain reactions triggered by chance firing in some excitatory neurons. 
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Figure 1. Dynamics in a network of integrate-and-fire neurons with complete connectivity. The 
full curve on top is the fraction of neurons spiking within a I ms time bin. Individual spike 
trains from a network of 400 excitatory neurons (1-400) and 100 inhibitory neurons (401-500) 
are shown below. Each dot is a single spike and each row is a single neuron. The spikes for 
every fifth neuron are plotted. Parameters of the network are: r,,, = 10 ms, r,, = ri. = 5 ms. 
KCX = K'" = 0.02. pel = 0.2, pin = 0.7, 10 = 1.001. 

We studied the behaviour of the network with different sets of parameters and found 
the most important parameters for determining the dynamics to be the relative time-scales 
of excitation and inhibition. When inhibition was faster than excitation, the variations in 
the firing rates of the neurons were less pronounced. although the firing remained highly 
variable. If, however, inhibition was slower than excitation, the network collapsed into 
sharp synchronized bursts of activity. 

Finally. we varied the strength of the input current lo from just below threshold to just 
above threshold. When the strength of the input current crossed the threshold value, the 
activity in the neiwork jumped from zero to a nonzero rate. This indicates that when the 
input is close to a threshold, which we suggest is typical during both spontaneous and driven 
activity, the network is close to a bifurcation point between quiescent and active states, and 
as a consequence is highly sensitive to the fluctuations of the input. We will return to this 
point in the context of columnar organization. 

3.2. Scaling of the network 

Real networks in the cortex contain many more neurons than the simulation of the 400 
neuron network. As we increase the size of the model network, how should the parameters 
be changed to allow comparisons among networks and how should these parameters be 
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Figure 2. Average cross-correlogram for 100 pairs of excitatory neurons from those shown in 
the figure I. 

Time (ms) 

Figure 3. Demonstration of the balance between synaptic currents in a single model neuron from 
a network of interacting integrate-and-fire neurons. The dashed line is the summed excitatory 
synaptic currents and the solid line is a plot of the total synaptic current including both inhibitory 
and excitatory inputs. 
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compared with experimental measurements? The answer to this questlon depends on the 
dynam~cal state of the cortical network. The usual approach is to decrease the strengths 
of all synapses with the size of the network to conserve the average synaptic currents to 
a neuron, assuming that the presynaptic firing rates remain fixed. However, this form of 
scaling does not maintain the fluctuations of the current, at least under conditions when there 
is no synchrony. Given the variability observed in cortical neurons, this type of scaling 
may not be appropriate for modelling a visual column responding to an effective stimulus. 

Another possibility would be to scale the reliability of synapses rather than their strength. 
In this approach, as the size of the network increases, each neuron experiences the same 
number of synaptic events of the fixed strength, and fluctuations will not change, at least 
when neurons in  the model are not synchronized. In reality the situation is more complicated 
due to the change of the dynamical state with the growth of the network. 

We illustrate the differences between these two ways of scaling by simulating networks 
with between 350 and 5600 neurons. The parameters in these networks were similar to those 
in figure 1, and 20% of the neurons in each network were inhibitory. The network with 5600 
neurons scaled by synaptic strengths had more regular activity than the network with 350 
neurons: the average coefficient of variation of interspike intervals (cv) fell from over 1.0 
to about 0.15. In contrast, the network with 5600 neuron scaled by t i e  synaptic, reliabilities 
remained highly irregular with a cv of 0.8. Spike trains from these large networks and the 
dependence of c v  on the size of the network are shown in figure 4. 

3.3. Columnar organization 

The cortex is topographically organized with a higher degree of connectivity within a vertical 
column than between columns. Neurons in an orientation columns in  primary visual cortex 
are arranged so that the preferred orientation changes gradually across columns except 
at occasional discontinuities [16]. These architectural features were incorporated into a 
model with 800 excitatory and 200 inhibitory neurons arranged in one-dimensional array. 
Each neuron was labelled with a preferred orientation from -90" to 90", including both 
excitatory and inhibitory populations, and the neurons at the two boundaries were identified 
to give the network a circular topology to minimize boundary effects. In contrast to the 
previous network, synaptic connections were only allowed between neurons with preferred 
orientations differing by less than 30" for excitatory neurons, and 36" for inhibitory neurons. 
This included recurrent excitatory connections among the excitatory neurons, recurrent 
inhibitory connections among the inhibitory neurons, and reciprocal connections between 
the excitatory and inhibitory neurons. All the allowed connections had same strength, 
K = 0.02. 

The input to the network was a broadly-tuned excitatory current close to the firing 
threshold, so that only a few neurons with preferred orientation near 0" received a 
superthreshold input, as shown in figure 5(a) (right panel). In the simulation shown in 
figure 5, the activity was restricted to neurons within 30" of the central peak of the input 
distribution. However, the firing patterns of the neurons within the column were highly 
irregular, similar to that observed in  the homogeneous network. The average firing rates 
are plotted as a function of orientation in figure 5(b),  which can also be considered the 
orientation tuning curve for a single neuron as a function of the orientation of the stimulus 
(position of the peak input). Note that during the continuous 1 s response in figure 5(a), the 
median of the distribution of spike firing shifted over time as the network fluctuated on a 
50 ms time-scale. 
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Figure 4. Comparison between two ways of scaling the synaptic parameters with the size of 
the network. The starting point was a network of 350 neurons (not shown), with parameters as 
in figure I, except for re, = 6 ms. Kc' = 0.02, Kt" = 0.025. pi. = 1.0 and p,, = 0.285. 
Simulations of the networks with 4480 excitatory and 1120 inhibitory neurons are shown on 
the bottom. On the left the synaptic reliabilities were scaled to the values p,, = 0.0178, 
pi, = 0.0625, with synaptic strengths left unchanged. On the right. the synaptic strengths were 
scaled to the values KcX = 0.0012. K'" = 0.0016. without changing the reliabilities. At the top 
is the average coefficient of variation of interspike intervals (cv) as a function of the size of the 
network for scaling by synaptic strengths (full) and synaptic reliabilities (broken). 

3.4. Dependence on the stimulus amplitude 

We investigated the influence of the stimulus amplitude on the orientational selectivity of 
the network. The input shown in figure 5(a) was modified to keep the baseline constant 
while the peak excitation was varied from just above the threshold to 10% above threshold 
to mimic a change in the contrast of the stimulus. The family of orientation tuning curves is 
plotted in figure 6. Three features should be noted. First, as the input amplitude increased, 
the amplitude of the tuning curves grew significantly, without a significant increase of the 
tuning width. The invariance of the tuning width to contrast has been observed experimen- 
tally [25]. This effect is discussed in the framework of mean-field model in 1261. Second, 
as was already noted, when the input first crossed threshold, the activity of the network 
started with the finite response of about 20 spikesls, indicating that the network was close 
to a bifurcation. Finally, as the input amplitude came closer to threshold, the network was 
activated with increasing delay, which also fluctuated strongly from trial to trial. For the 
lower curve in figure 6 the delay averaged 50 ms. In our simulations at low input, it took 
longer for neurons reach their thresholds and to bifurcate to an active state (see discussion). 
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Figure 5. Model of the dynamics of an orientation column in the visual cortex. (a) Activ~ty 
of a network of 800 excitatory and 200 inhibitory neurons with local connectivity (left panel). 
Neurons are labelled by their preferred orientation. Only the spikes of the excitatory neurons 
are shown. The full curve at the right is the external input. broadly tuned around 0' .  Parameters 
are the same as in figure I except for p,, = 0.22. (6) Average firing rates of the excitatory 
neurons as a function of their preferred orientation for the input shown in (a). 

3.5. Rapid switching 

When visual input to the cortex is rapidly switched following a saccade, it is important that 
the neurons in the primary visual cortex be able to shift rapidly from one configuration to 
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Figure 6. Tuning curves for neurons in the orientation column model. The same plot as in 
figure 5(b) with four different peak amplitudes of external input: 0.1%. 1%. 5% and 10% from 
bottom to top, respectively. 
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Figure 7. Rapid switching in a locally connected network, as in figure 5(a). The tuning curve 
of the external input instantaneously shifted from 0' to 903 ar r = 500 ms. The arrow at the 
top indicates the time when the shift occurred. 
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Figure 8. Rapid switching in a locally connected network as in figure 7. but with inhibit~on 
20% faster than excitation. Parameters were the same as in figure 5 except for r,, = 6 rns. 
K'" = 0.025 and lo = 1.01. 

another. This was simulated by instantaneously shifting the peak of the input curve shown in 
figure 5(a) from 0" to 90°, as shown in figure 7. The network reorganized in less than 50 ms 
to a new firing pattern in response to the new input without activity moving through neurons 
with intermediate orientation preferences. The shift shown in figure 5 occurred during a 
transient burst of activity in the population around 0°, which was abruptly terminated. As 
in the homogeneous case, the speed with which the network shifted from one configuration 
to another was sensitive to the relative time constants of excitation and inhibition. The 
transitions were faster when inhibition was faster than excitation. In the simulations shown 
in figure 8, the transition time was about 10 ms when the time constant of excitation was 
20% slower than that of inhibition. 

4. Discussion 

The simulations presented here demonstrate a new regime for neural network dynamics that 
occurs under conditions that match in vivo recordings from cortical neurons. This includes 
quantitative measures of the irregular firing patterns observed in cortical neurons and the 
cross-correlations between them. In agreement with experimental results of [ 17. 181, the 
orientation tuning of the excitatory and inhibitory input currents to a neuron had the same 
orientation tuning. Although external input currents were weak, the currents generated 
through feedback connections within the network were substantial. In the balanced regime, 
fluctuations of the synaptic input to a given neuron were large even if there was no correlation 
of the presynaptic activity. 
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4.1. Rapid state switching 

The cerebral cortex receives a rapidly shifting report from the external environment and 
must extract fleeting information from this input stream. The balanced network can rapidly 
sw~tch to a new state within a few tens of ms following a sudden sh~ft in the input. This 
property of the network allows feedback-mediated cortical dynamics to contribute to the 
mformation processing on a short time-scale (see also [13]). This is compatible with 
experiments showing that the response properties of neurons In visual cortex were already 
specific within the first few tens of ms after the response onset [19. 20). 

The balance condition, which was essential for permitting rapid state switching. 
depended on several features of the network architecture. Many conditions were tested. 
but the most robust results were obtained when the range of excitatory and inhibitory 
interactions were similar. In addition, it was important that the external inputs were only 
strong enough to bring the neurons to threshold; this insured that even those neurons not 
in an active state were fluctuating near threshold. Thus, only small shifts in the input were 
needed to produce a large change in the activity. These conditions illustrate the importance 
of network parameters, as well as internal properties such as a small reset, for achieving 
the balanced state of the neurons in the cortical network model. 

A network with a similar architecture but with long-range inhibition, and operating in a 
mean-field regime was analyzed in [21, 261. The mean-field model produced a distribution 
of average firing rates similar to that in the present model but without the large fluctuations 
observed in our model. A more dramatic difference between the two models emerged when 
the input was suddenly shifted. As shown in [26], the activity continuously 'moved' through 
neurons with intermediate preferred orientations until it matched the peak of the new input 
distribution (this was called 'mental rotation' in [22]). This effect was also demonstrated in 
a more realistic model of spiking neurons [23], where the cause of rotation was the active 
modulation of synapses rather then the shift of the input. 

Another interesting dynamical aspect of the network is a bifurcation between the 
quiescent and active states. We found that as the external input amplitude crossed the 
threshold value, the network activity started with finite firing rates, but at threshold there 
was a longer delay that had variable duration. A dependence of the delay on the contrast of 
the stimulus has been observed in recording from the cortex [24]. In our simulations, the 
fluctuating input from thalamus and remote cortical areas was modelled as a constant input 
current. In the real situation, it may be that as the contrast is reduced to just noticeable 
values, the network experiences randomly positioned bifurcations to the active state with 
finite firing rates. The biological implications of this observation deserve further study with 
experimental and modelling techniques. 

4.2. Network scaling 

One way to characterize the collective properties of a network 1s to increase its size 
and observe its behaviour in the limit as it becomes infinite. Increasing the size of the 
present network with fixed values of synaptic strengths leads to increased variability. If 
the strengths of the synapses are normalized with the size of the network, the mean-field 
approximation becomes exact in this limit and the fluctuations are reduced to zero (called 
the thermodynamic limit for physical systems). This normalization can be justified only if 
fluctuations are small (k << 1, see (4)). We propose another way of scaling up the network 
by normalizing the synaptic reliability. Our simulations demonstrate that these two ways of 
scaling may lead to very different behaviours as the network size grows. The probabilities 
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for excitatory neurotransmltter release in our model ranged from p,, = 0.2 to 0.01 (see 
figure 4). These small values are representative for the majority of excitatory synapses In 

the hippocampus [27, 281. Our model demonstrates how reliable active states can emerge 
from highly unreliable synapses. 

The network was stable over a wide range of parameters in  our simulations. This was 
quite surprising since positive feedback from recurrent collateral between excitatory neurons 
tends to produce an explosion of activity. The key to self-stabilizing the network was fast 
feedback inhibition that balanced the excitation. The high gain of the circuit can amplify 
weak input signals without sacrificing steady-state stability. This feature of the network 
connectivity is similar to that of the canonical cortical microcircuit introduced by Douglas 
and Martin [I 81. 

The synaptic strengths in  the model were fixed, but in biological systems, the synaptic 
strengths may be modulated on fast and slow time-scales, depending on the firing rates of 
the neurons and other conditions [29]. The reliability of synapses may also be regulated. 
It would be interesting to investigate the behaviour of the model network with dynamically 
changing parameters. By changing some parameters, such as the reset amp!itude, the 
network could switch between the mean-field regime and the strongly fluctuating one 
described in this paper and adjust its sensitivity to information on different time-scales. 
One of the most important properties of the input is its rate of change and we have already 
shown how the network with one set of parameters reacts to an instantaneous change. It 
will be of interest to explore other sets of parameters and other types of time-varying inputs. 

The focus of this paper has been on a greatly simplified version of cortical architecture. 
The goal was to study the stability and switching behaviour in a new dynamical regime where 
fluctuations are strong. There are many extensions of the model that would make it more 
biologically realistic, including two-dimensional topography and additional populations of 
neurons representing cortical layers. In the cortex there is a variety of neuronal types that 
differ in their intrinsic properties as well as their connectivity and these need to be included 
to more accurately account for processing in visual cortex. These extensions are under 
investigation. 

Acknowledgments 

We greatly benefited from discussions with T Bell, C Koch, Z Mainen, M Shadlen and 
H Sompolinsky. We are also grateful to L Abbott, D Amit, H Sompolinsky and Z Mainen 
for critical reading of the manuscript. 

Nore added in proof. A model of orientation selectivity in cat visual cortex [30]. based on recurrent excitation and 
similar in spirit to the more simplified model studied here, reached simlar conclusions regarding cortical dynamics. 

References 

[I] Smith D R and Smith G K 1965 A statistical analysis of the continual actlvity of single cortical neurons in 
the cat unanesthetized forebrain Biophys. J.  5 47-74 

[2] Shadlen M and Newsome W 1994 Noise; neural codes and cortical organization Current 6iolOgy 4 569-79 
(31 Sofiky W R and Koch C 1993 The highly irregular firing of cortical cells is inconsistent with temporal 

integration of random EPSPs J. Neurosci. 133 334-450. 
[4] Abeles M 1991 Corriconics (New York: Cambridge University Press) 
(51 Douglas R I. Martin K A C and Whineridge D 1991 An intracellular analysis of the visual responses of 

neurons in cat visual cortex J. Physiol. 440 659-96 
(61 Sejnowski T 1 1976 On the stochastic dynamics of neuronal interaction B i d  Cybrrn. 22 203-1 1 .  



124 M V Tsodyks and T Sejnowski 

171 Amit D J. Evans M R and Abeles M 1990 Attractor neural networks w~th biological probe neurons Network 
1 38 1405 

181 Amit D J and Tsodyks M V 1992 Effective neurons and attractor neural networks in cortical environment 
Network 3 12 1-37 

191 Tsodyks M, Bell A. Mainen Z F and Sejnowski T J 1994 Why do cortical neurons spike irregularly? Soc. 
Neurosci. Abs. 20 1527 

[IOj Cerstein G and Mandelbrot B 1964 Random walk models for the spike activity of a single neuron Biophys. J. 
4 41-68 

[I l j Wilson H R and Cowan J D 1974 Excitatory and inhibitory interactions of localized populations of model 
neurons Biophys. J. 12 1-24 

[I21 Amit D J and Tsodyks M V 1991 Quantitative study of attractor neural network retrievmg at low sp~ke rates 
I: Substrate-spikes. rates and neuronal gain Network 2 259-73 

(131 Treves A 1993 Mean-field analysis of neuronal spike dynamics Nerwork 4 259-84 
1141 Stem P. Edwards F A and Sakmann B 1992 Fast and slow components of unitary EPSCS on stellate cells 

elicited by focal stimulation in slices of rat visual cortex J. Physiol. 449 247-78 
[I51 Abbott L F and van Vreeswijk C 1993 Asynchronous states in networks of pulsecoupled oscillators Phyz 

Rev. E 48 1483-90 
116) Hubel D H and Wiesel T N 1968 Receptive fields and functional architecture of monkey striate cortex 

J.  Physiol. 195 2 1543  
1171 Ferster D 1986 Orientational selectivity of synaptic potentials in neurons of cat primay visual cortex 

J. Neurosci. 6 1284-301 
1181 Douglas R J and Martin K A C 1991 A functional microcircuit for cat visual cortex I. Physiol. 440 73549 
1191 Tovee M J. Rolls E T. Treves A and Bellis R P 1993 Information encoding and the responses of single 

neurons in the primate temporal visual cortex J. Neurophysiul. 70 640-54 
(201 Celebrini S. Thorpe S. Trotter Y and lmbert M 1993 Dynamics of orientation coding in area V I of the awake 

primate Ksual Neunmi. 10 81 1-25 
[21j Lukashin A V and Georgopoulous A P 1993 A dynamical neural network model for motor cortical activity 

during movement: population coding of movement trajectories Biol. Cybern. 69 5 17-24 
[22] Georgopoulous A P, Lurito J T, Petrides M, Schwartz A B and Massey J T 1989 Mental rotation of the 

neuronal population vector Science 260 47-52 
[231 Lukashin A V and Georgopoulous A P 1994 Directional operations in the motor cortex modelled by a neural 

network of spiking neurons Biol. Cybern. 71 79-85 
1241 Dean A F and Tolhurst D J 1986 Factors influencing the temporal phase of response to bar and grating 

stimuli for simple cells in the cat striate cortex Exp. Brain Res. 62 143-5 1 
1251 Skottun B C, Bradley A. Sclar G, Ohzawa I and Freeman R D 1987 The effect of contrast on visual orientation 

and spatial frequency J.  Neurophysiol. 57 773-86. 
1261 Ben-Yishai R, Lev Bar-Or R and Sompolinsky H 1994 Theory of Orientation Tuning in Visual Cortex Hebrew 

Ut~iversity of Jerusalem Preprint 

1271 Hessler N A. Shirke A M and Malinow R 1993 The probability of transmitter release at a mammalian central 
synapse Nature 366 569-72 

(281 Rosenmund C, Clements J D and Westbrook G L 1993 Nonuniform probability of glutamate release at a 
hippocampal synapse Sclence 262 754-7 

1291 Thompson A M and Deuchars J 1994 Temporal and spatial properties of local c~rcuits in neocortex Trends 
in Neuroscience 17 1 19-26 

1301 Somers D C. Nelson S B and Sur M 1995 An emergent model of orientation selectivity in cat visual cortical 
simple cells J. Neurosci. in press 


